摘要:本文通过比亚迪公司的专利了解电动汽车、车载充电器及其过流保护电路,其中,车载充电器包括AC/DC变换器和DC/DC变换器,AC/DC变换器和DC/DC变换器均采用光耦驱动的SiC开关管,过流保护电路包括:电流检测单元,通过检验测试DC/DC变换器的输出端电流以输出电流检测值;过流保护单元,用于输出过流保护信号;控制单元,在接收到过流保护信号时关闭SiC开关管的控制信号输出通道,以使AC/DC变换器和DC/DC变换器停止工作。该过流保护电路能在车载充电器出现过流故障时快速触发过流保护功能,提升车载充电器工作的安全性,同时,采用SiC开关管能大大的提升车载充电器的充电速率,降低控制难度和成本。
本实用新型涉及电动汽车技术领域,特别涉及一种车载充电器的过流保护电路、一种车载充电器和一种电动汽车。
由于传统燃油车产生的汽车尾气加重环境污染,地球石油资源日益紧缺,因此全球市场对电动汽车的需求急速增长。目前,车载充电器多使用两级变换结构,具体结构如图1所示,该车载充电器先将交流电经过AC/DC变换器100整流,然后将整流后的直流电接入DC/DC变换器200,以对直流电压进行调节,最后将调节后的直流电输入到负载(即电池包)。具体电路拓扑如图2所示,DC/DC变换器200多采用BOOST(升压斩波电路)和BUCK(降压斩波电路)电路实现DC/DC转换,开关管通常用IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管),通过驱动芯片控制IGBT的通断,该驱动芯片的型号一般为1ED020I12FA。
为保证车载充电器工作的安全性,通常要设置过流保护电路。一些车载充电器能够准确的通过采集到的IPM(Intelligent Power Module,智能功率模块)的过流保护信号,通过软件或者硬件电路关闭PWM(Pulse Width Modulation,脉冲宽度调制)输出通道,实现过流保护。
但是,大部分车载充电器使用的是MOS管,没有IPM(Intelligent Power Module,智能功率模块)过流保护信号,需要通过检验测试车载充电器的电流信号以构建过流保护信号。然而,一些车载充电器最高开关频率可达100KHz,如果采用上述方法的实现车载充电器的过流保护功能,其过流保护电路的动作延迟时间较大,过流保护功能存在失效风险,极度影响车载充电器工作的安全性。
本实用新型旨在至少在某些特定的程度上解决有关技术中的技术问题之一。为此,本实用新型的一个目的是提出一种车载充电器的过流保护电路,该过流保护电路能在车载充电器出现过流时快速触发过流保护功能,提升车载充电器工作的安全性,同时,车载充电器采用SiC(Silicon Carbide,碳化硅)开关管,能大大的提升车载充电器的充电速率,降低控制难度和成本。本实用新型的第二个目的是提出一种车载充电器。本实用新型的第三个目的是提出一种电动汽车。
为达到上述目的,本实用新型一方面提出了一种车载充电器的过流保护电路,所述车载充电器包括AC/DC变换器和DC/DC变换器,所述AC/DC变换器和DC/DC变换器均采用光耦驱动的SiC开关管,所述过流保护电路包括:电流检测单元,所述电流检测单元通过检验测试所述DC/DC变换器的输出端电流以输出电流检测值;过流保护单元,所述过流保护单元与所述电流检测单元相连,所述过流保护单元用于在所述电流检测值大于预设电流阈值时输出过流保护信号;控制单元,所述控制单元与所述过流保护单元相连,所述控制单元在接收到所述过流保护信号时关闭所述SiC开关管的控制信号输出通道,以使所述AC/DC变换器和DC/DC变换器停止工作。
根据本实用新型的车载充电器的过流保护电路,电流检测单元通过检验测试DC/DC变换器的输出端电流以输出电流检测值,过流保护单元在电流检测值大于预设电流阈值时输出过流保护信号,控制单元在接收到过流保护信号时关闭SiC开关管的控制信号输出通道,以使AC/DC变换器和DC/DC变换器停止工作。由此,该过流保护电路能在车载充电器出现过流故障时快速触发过流保护功能,提升车载充电器工作的安全性,同时,车载充电器采用SiC开关管,能大大的提升车载充电器的充电速率,降低控制难度和成本。
所述电流检测单元包括电流霍尔传感器,所述电流霍尔传感器连接到所述DC/DC变换器的输出端。所述DC/DC变换器为谐振全桥隔离变换器,所述谐振全桥隔离变换器包括第一桥式变换单元、第二桥式变换单元和隔离变压器,所述第一桥式变换单元的输入端与所述AC/DC变换器的直流端相连,所述第一桥式变换单元的输出端连接到所述隔离变压器的初级侧,所述隔离变压器的次级侧连接所述第二桥式变换单元的输入端,所述第二桥式变换单元的输出端并联有直流侧电容、且作为所述DC/DC变换器的输出端,所述电流霍尔传感器连接到所述直流侧电容的正极端。
所述AC/DC变换器为三相桥式变换器,所述三相桥式变换器的交流端用以连接电网或驱动电机,所述三相桥式变换器的直流端并联有母线电容。所述SiC开关管为SiC功率场效应管。所述过流保护单元包括:串联在基准电压电源与地之间的第一电阻、第二电阻和第三电阻,所述第二电阻与所述第三电阻之间具有第一节点;比较器,所述比较器的负输入端与所述电流检测单元的输出端相连,所述比较器的正输入端与所述第一节点相连;第四电阻,所述第四电阻的一端与第一预设电源相连,所述第四电阻的另一端与所述比较器的输出端相连;第五电阻,所述第五电阻的一端与所述比较器的输出端相连;第六电阻,所述第六电阻的一端与所述第五电阻的另一端相连,所述第六电阻的另一端接地;第一电容,所述第一电容与所述第六电阻并联。
所述过流保护单元还包括:放大器,所述放大器的正输入端分别与所述第五电阻的另一端和所述第六电阻的一端相连,所述放大器的负输入端与所述放大器的输出端相连,所述放大器的电源端与所述第一预设电源相连;第二电容,所述第二电容的一端与所述放大器的电源端相连,所述第二电容的另一端接地;第七电阻,所述第七电阻的一端与所述放大器的输出端相连,所述第七电阻的另一端与所述控制单元相连;第三电容,所述第三电容的一端与所述第七电阻的另一端相连,所述第三电容的另一端接地。
所述过流保护单元还包括:第一箝位二极管,所述第一箝位二极管的阳极接地;第二箝位二极管,所述第二箝位二极管的阳极与所述第一箝位二极管的阴极相连,所述第二箝位二极管的阳极与所述第一箝位二极管的阴极之间具有第二节点,所述第二箝位二极管的阴极与所述第一预设电源相连,所述第二节点与所述第七电阻的另一端相连。
为达到上述目的,本实用新型的第二方面提出一种车载充电器,其包括本实用新型第一方面所述的车载充电器的过流保护电路。
本实用新型的车载充电器,通过上述的车载充电器的过流保护电路的电流检测单元检测DC/DC变换器的输出端电流以输出电流检测值,并通过过流保护单元在电流检测值大于预设电流阈值时输出过流保护信号,以及经过控制单元在接收到过流保护信号时关闭SiC开关管的控制信号输出通道,以使AC/DC变换器和DC/DC变换器停止工作。由此,该车载充电器可以在出现过流故障时快速触发过流保护功能,提升车载充电器工作的安全性,同时,车载充电器采用SiC开关管,能大大的提升车载充电器的充电速率,降低控制难度和成本。
为达到上述目的,本实用新型的第三方面提出一种电动汽车,其包括本实用新型第二方面所述的车载充电器。
本实用新型的电动汽车,通过上述的车载充电器,可以在车载充电器出现过流故障时快速触发过流保护功能,提升车载充电器工作的安全性,同时,车载充电器采用SiC开关管,能大大的提升电动汽车的充电速率,降低控制难度和成本。
本实用新型上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
下面详细描述本实用新型的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本实用新型,而不能理解为对本实用新型的限制。
下面参照附图来描述根据本实用新型实施例提出的车载充电器的过流保护电路、车载充电器和电动汽车。图3是根据本实用新型一个实施例的车载充电器的过流保护电路的方框示意图。其中,如图4所示,车载充电器包括:AC/DC变换器40和DC/DC变换器50,AC/DC变换器10和DC/DC变换器20均采用光耦驱动的SiC开关管。
如图3所示,过流保护电路包括:电流检测单元10、过流保护单元20和控制单元30。电流检测单元10通过检验测试DC/DC变换器50的输出端电流以输出电流检测值。过流保护单元20与电流检测单元10相连,过流保护单元20用于在电流检测值大于预设电流阈值时输出过流保护信号。控制单元30与过流保护单元20相连,控制单元30在接收到过流保护信号时关闭SiC开关管的控制信号输出通道,以使AC/DC变换器40和DC/DC变换器50停止工作。预设电流阈值能够准确的通过真实的情况进行预设。
其中,在本实用新型实施例中,SiC开关管为SiC功率场效应管。与传统的场效应管相比,SiC功率场效应管具有如下优点:1、耐压值高,可达到1200V;2、过电流能力强,可达到72A;3、导通阻抗低;4、快速的开关能力;5、更快的反向恢复能力;6、并联使用更便利,且驱动方式更简单。因此,用SiC功率场效应管代替传统的场效应管,能大大的提升车载充电器的充电速率,降低控制难度和成本。具体地,电流检测单元10实时检测车载充电器DC/DC变换器50的输出端电流,并输出电流检测值至过流保护单元20,如果电流检测值大于预设电流阈值,则说明车载充电器出现过流故障,过流保护单元20输出过流保护信号至控制单元30。控制单元30可以为DSP(Digital Signal Process,数字信号处理)芯片,其型号可以为TMS320F28335,该型号的DSP芯片支持外部中断,过流保护单元20将过流保护信号发送到DSP芯片支持外部中断的引脚,触发中断,关闭SiC开关管的控制信号输出通道,即PWM(Pulse Width Modulation,脉冲宽度调制)通道,AC/DC变换器40和DC/DC变换器50停止工作,实现车载充电器的过流保护。
需要说明的是,在本实用新型的实施例中,光耦能够正常的使用安华高的贴片集成块ACPL-K33T,其采用18V供电,一路互补PWM信号分别加在光耦的ANODE引脚和CATHODE管脚,光耦输出通过门极电阻连接SiC功率场效应管的门极。当ANODE引脚是高电平且CATHODE引脚是低电平时,光耦输出高电平18V,SiC功率场效应管开通;当ANODE引脚是低电平且CATHODE引脚是高电平时,光耦输出低电平0V,SiC功率场效应管关断,AC/DC变换器40和DC/DC变换器50停止工作。
根据本实用新型的一个实施例,电流检测单元10包括电流霍尔传感器101,如图4所示,电流霍尔传感器10连接到DC/DC变换器50的输出端。电流霍尔传感器101能够正常的使用意瑞半导体的双向电流霍尔传感器CH704150CT。
进一步地,根据本实用新型的一个实施例,如图4所示,DC/DC变换器50为谐振全桥隔离变换器,谐振全桥隔离变换器包括第一桥式变换单元501、第二桥式变换单元502和隔离变压器T,第一桥式变换单元501的输入端与AC/DC变换器40的直流端相连,第一桥式换单元501的输出端连接到隔离变压器T的初级侧,隔离变压器T的次级侧连接第二桥式变换单元502的输入端,第二桥式变换单元502的输出端并联有直流侧电容C、且作为DC/DC变换器50的输出端,电流霍尔传感器101连接到直流侧电容C的正极端。具体地,如图4所示,谐振全桥隔离变换器还包括第一电感Lr1、初级侧电容Cr1、第二电感Lr2和次级侧电容Cr2,第一电感Lr1、初级侧电容Cr1、第二电感Lr2、次级侧电容Cr2与变压器T构成谐振直流变换器,用于实现动力负载与交流电源(电网/驱动电机)之间的隔离。通过设置谐振直流变换器中Lr1、Cr1、Lr2、Cr2的参数,使DC/DC变换器50呈现感性,即电流滞后电压,从而使V1-V8开通前,已有电流经过续流二极管,V1-V8两端的电压近似为零,实现零电压开通,达到减少开通损耗的目的。第一桥式变换单元501由第一至第四SiC功率场效应管即V1-V4和续流二极管组成,第二桥式变换单元502由第五至第八SiC功率场效应管即V5-V8和续流二极管组成。此外,如图4所示,车载充电器还可以包括EMI (Electro Magnetic Interference,电磁干扰)模块,EMI模块连接在电网/驱动电机与AC/DC变换器40之间,用于满足电源的EMI要求。具体连接方式如图4所示,此处不再赘述。
根据本实用新型的一个实施例,如图4所示,AC/DC变换器40为三相桥式变换器,三相桥式变换器的交流端用以连接电网或驱动电机,三相桥式变换器的直流端并联有母线用以将交流电转换为直流电。根据本实用新型的一个实施例,如图5所示,过流保护单元20包括:第一电阻R1、第二电阻R2、第三电阻R3、比较器A1、第四电阻R4、第五电阻R5、第六电阻R6和第一电容C1。其中,第一电阻R1、第二电阻R2和第三电阻R3串联在基准电压电源VCC1与地GND之间,第二电阻R2与第三电阻R3之间具有第一节点Q1。比较器A1的负输入端与电流检测单元10的输出端相连,比较器A1的正输入端与第一节点Q1相连。第四电阻R4的一端与第一预设电源VCC2相连,第四电阻R4的另一端与比较器A1的输出端相连。第五电阻R5的一端与比较器A1的输出端相连。第六电阻R6的一端与第五电阻R5的另一端相连,第六电阻R6的另一端接地,第一电容C1与第六电阻R6并联。具体地,基准电压电源VCC1可以为3V,R1可以为2KΩ,R2可以为220Ω,R3可以为20KΩ,基准信号为2 .7V。比较器A1的型号可以为LM2901,LM2901为OC门,不能输出高电平,R4为上拉电阻,可以使比较器A1输出高电平。其中,第一预设电源VCC2可以为5V,R4的可以为10KΩ,R5可以为10KΩ,R6可以为15KΩ,C1可以为1nF。R5、R6构成0 .6的比例,使过流保护信号的满足DSP的要求,R5和C1实现滤波的功能。
进一步地,根据本实用新型的一个实施例,如图5所示,过流保护单元20还可以包括:放大器A2、第二电容C2、第七电阻R7、第三电容C3。其中,放大器A2的正输入端分别与第五电阻R5的另一端和第六电阻R6的一端相连,放大器A2的负输入端与放大器A2的输出端相连,放大器A2的电源端与第一预设电源VCC2相连。第二电容C2的一端与放大器的电源端相连,第二电容C2的另一端接地。第七电阻R7的一端与放大器A2的输出端相连,第七电阻R7的另一端与控制单元30相连。第三电容C3的一端与第七电阻R7的另一端相连,第三电容C3的另一端接地。
具体地,放大器A2的型号可以为LMV842,放大器A2可当作电压跟随器。C2用以稳定5V电源,其大小可以为100nF。R7和C3用以滤波,R7可以为51Ω,C3可以为22nF。更进一步地,根据本实用新型的一个实施例,如图5所示,过流保护单元20还可以包括:第一箝位二极管D1和第二箝位二极管D2。其中,第一箝位二极管D1的阳极接地。第二箝位二极管D2的阳极与第一箝位二极管D2的阴极相连,第二箝位二极管D2的阳极与第一箝位二极管D1的阴极之间具有第二节点Q2,第二箝位二极管Q2的阴极与第一预设电源VCC2相连,第二节点Q2与第七电阻R7的另一端相连。
具体地,第一箝位二极管D1和第二箝位二极管D2用以将过流保护信号的电平控制在预设范围内,超过预设范围的信号将被丢弃,以防止过流保护信号过强损坏控制单元30。由图4和图5可知,当电流检测值大于预设电流阈值时过流保护单元20将输出过流保护信号至控制单元30。控制单元30接收到过流保护信号,并关闭SiC开关管的控制信号输出通道,以使AC/DC变换器40和DC/DC变换器50停止工作,以此来实现车载充电器的过流保护功能。
本实用新型的车载充电器的过流保护电路将软硬件结合起来,软件提前配置好中断,当硬件检测出过流故障时,能马上触发过流保护,缩短了保护电路的动作用时间,提升了车载充电器工作的安全性。
综上所述,根据本实用新型的车载充电器的过流保护电路,电流检测单元通过检验测试DC/DC变换器的输出端电流以输出电流检测值,过流保护单元在电流检测值大于预设电流阈值时输出过流保护信号,控制单元在接收到过流保护信号时关闭SiC开关管的控制信号输出通道,以使AC/DC变换器和DC/DC变换器停止工作。由此,该过流保护电路能在车载充电器出现过流故障时快速触发过流保护功能,提升车载充电器工作的安全性,同时,车载充电器采用SiC开关管,能大大的提升车载充电器的充电速率,降低控制难度和成本。
本实用新型还提出一种车载充电器,其包括上述的车载充电器的过流保护电路。本实用新型的车载充电器,通过上述的车载充电器的过流保护电路的电流检测单元检测DC/DC变换器的输出端电流以输出电流检测值,并通过过流保护单元在电流检测值大于预设电流阈值时输出过流保护信号,以及经过控制单元在接收到过流保护信号时关闭SiC开关管的控制信号输出通道,以使AC/DC变换器和DC/DC变换器停止工作。由此,该车载充电器可以在出现过流故障时快速触发过流保护功能,提升车载充电器工作的安全性,同时,车载充电器采用SiC开关管,能大大的提升车载充电器的充电速率,降低控制难度和成本。
本实用新型的电动汽车,通过上述的车载充电器,可以在车载充电器出现过流故障时快速触发过流保护功能,提升车载充电器工作的安全性,同时,车载充电器采用SiC开关管,能大大的提升电动汽车的充电速率,降低控制难度和成本。
文章中提到的CH704150CT芯片是隔离集成式电流传感器芯片,具有高精度、增强绝缘耐压、高可靠性、低功耗等优点。CH704系列新产品是专为大电流检测应用开发的隔离集成式电流传感芯片,内置 0.1mΩ 的初级导体电阻,大大降低芯片发热支持大电流检测:±50A, ±100A, ±150A, ±200A。其内部集成独特的温度补偿电路以实现芯片在 -40 到150°C全温范围内良好的一致性。该芯片是满足汽车级标准的产品,填补了国内的空白。
空调作为汽车必备的一个配置,能够解决在冬季和夏季因为环境问题带来的不舒适性,有了空调无疑也能更好的驾驭车辆,无论是电动汽车还是传统的燃油车都会搭配,针对于汽车空调传统的燃油车是依靠内燃机来驱动空调压缩机,以此来实现车辆内部的取暖和制冷,来维护人体最舒适的温度,随着电动汽车的兴起,在车辆的结构上面,电动汽车与燃油车不同,那么也就是意味着车辆的空调等系统也是不一样的,纯电动汽车是怎么取暖和制冷的? 说起纯电动汽车是怎么取暖和制冷,这个需要从纯电动汽车的空调系统的工作原理和纯电动汽车空调系统的结构说起,纯电动汽车空调系统,由于在结构上面没有发动机作为空调压缩机的动力源,因此无法直接采用传统汽车空调系统的解决方案;对于电动汽车来说
是怎么取暖和制冷的? /
如今,大街上的电动汽车数量慢慢的变多,让人感受到了电动汽车产业的蓬勃发展。电动汽车最让人津津乐道的,是它具有低碳环保、启动快、节能等优点,而且运行平稳,没有汽油味与发动机轰响的声音,乘车感觉比燃油汽车更加舒适。不过,近年来全国各地发生的多起电动汽车自燃事件,引起了人们对电动汽车的安全性的质疑。 2011年4月,杭州武林路上一辆纯电动出租车突然发生自燃,无人员受伤或死亡。经过调查之后,当地部门认为事故并非因电池单体设计、制造方面存在质量上的问题,而是电池成组后不能完全满足车辆使用环境的需求,在应用过程中,出现了电池漏液、绝缘受损以及局部短路的情况,从而引发事故。 2011年4月,杭州武林路一辆电动出租车突然当街“发火”。 20
国家鼓励以电动车为主的新能源政策明晰后,各车企纷纷上马电动车项目。但因为电动车各项标准的缺失,多少令各企业的豪言壮语略显空洞。记者上周六从北京市质量监督局获悉,目前国家正对电动车标准做指导性分类,下半年将陆续发布15个电动汽车相关标准。 记者获悉,正在起草的电动车标准包括,电池箱的规格、电压电流的安全数据参考值范围、电池的合理化回收再利用以及报废的安全无污染处理、对电池更换设备的要求、充电站监控、计费、安全、电池箱编号等。 此一系列电动车标准的起草单位团体由政府部门、学校和研究机构三方面组成,包括北京理工大学、北京市发改委、国家汽车质量监督检验中心、普天海油新能源动力有限公司等单位。
近日,宝马公布隐藏在格栅中的变色大灯透镜专利图,这种新的前面板,将大灯集成到一个无缝面板后面的格栅上,带有主动透镜,让光线透过。宝马新的一体式“发光格栅”,以取代传统格栅,大概会用于下一代电动汽车,如下一代宝马i7。 专利申请显示,该装饰面元素将由多个层压层组成,还可以包括除冰元素。这将有利于消除寒冷气候下的冰盖大灯,由于LED元件缺乏热量,电动汽车所有者一直在努力解决这一个问题。 外层将是透明的,由聚碳酸酯制成,半透明内层也是如此。它们之间将是一个由带有不可渗透涂层的隔光塑料组成,连接到每个功能的LED光源。这些层将负责将光线导向预定区域。 电动汽车不需要内燃机车辆的进气口,i7、iX和i4车型上的肾形格栅插入物纯
电动汽车动力电池需要高功率密度、高单位体积内的包含的能量、寿命长、环保等要求,而锂电池具有上述优点,因此在电动汽车中得到普遍应用,今天就来说说锂电池和管理他们的系统。 常用电池类型及其应用要求有哪些? 车用锂电池有以下这些: 等类型,电池放电温度在-20~55℃。充电温度在0~45℃。如果以Li4Ti5O12/LTO为负极材料,充电温度能达到-30℃,通常锂电池的使用电压范围为1.5V~4.2V(其中C/NCA、C/NCM、C/LMO为2.5V~4.2V;LTO/C/LMO为1.5V~2.7V;C/LFP为2.0V~3.7V)。 通常温度为90~120℃,SEI膜开始步入放热分解(图1)。
2017年第一季度,特斯拉交付了超过2.5万辆汽车,同比增长近69%。其中,ModelS的交付量为1.35万辆,同比增长5.9%;ModelX交付量是1.12万辆,同比大涨21.5%。5月4日,美国电动汽车生产商特斯拉发布了2017年第一季度财务报表。财报显示,特斯拉第一季度总营收为26.96亿美元,同比增长135%,创下了公司历史上的单季营收新纪录。 2016年是中国电动汽车市场的第三年,而国外的汽车品牌始终忽视了这一巨大的市场,中国本土的品牌占据了95%的市场占有率,但这也使得中国电动汽车品牌在全球所占的市场占有率从2015年的31%增长到43%。中国不仅是全球最大的电动汽车市场,同时也是增长速度最快的一个。 据彭博社报道,消
2023 年 8 月 1 日讯—— 麦格纳致力于推动电动传动系统和动力总成技术的发展,着力提高效率、安全性、动力和便利性,并基于此不停地改进革新。日前,麦格纳宣布开始生产市场首发的模块化电子断开装置,将搭载在德国高端汽车厂商的多个纯电动汽车项目上。 麦格纳全新的电子断开装置将在奥地利兰纳赫生产 作为纯电动汽车的独立外挂式解决方案,麦格纳的电磁电子断开装置技术是一项耐用且经过验证的完整模块产品。电子断开装置是一款机电装置,在整车不需要驱动电机提供动力时,可以将电驱轴与轮端半轴断开以减少电机和减速器的反拖拽扭矩损失,由此减少能耗,提升效率。该技术的应用对所有电动汽车的续航能力有重大的贡献,最高能提升9%续航里程,同时电子离合器
模块化电子断开装置 /
摘要:本文通过比亚迪公司的专利了解电动汽车、车载充电器及其过流保护电路,其中,车载充电器包括AC/DC变换器和DC/DC变换器,AC/DC变换器和DC/DC变换器均采用光耦驱动的SiC开关管,过流保护电路包括:电流检测单元,通过检验测试DC/DC变换器的输出端电流以输出电流检测值;过流保护单元,用于输出过流保护信号;控制单元,在接收到过流保护信号时关闭SiC开关管的控制信号输出通道,以使AC/DC变换器和DC/DC变换器停止工作。该过流保护电路能在车载充电器出现过流故障时快速触发过流保护功能,提升车载充电器工作的安全性,同时,采用SiC开关管能大大的提升车载充电器的充电速率,降低控制难度和成本。 技术领域 本实用新型涉及电动汽车技术
电路分析 /
充电系统
无线充电站方案
动力电池箱体设计
标准体系
2019_Digikey KOL系列:小功率 DC-DC 换流器设计常用技巧
有奖直播:Keysight World Tech Day 2024 汽车分论坛|汽车无人驾驶与新能源
嵌入式工程师AI挑战营(初阶):基于RV1106,动手部署手写数字识别落地
电路1:简易声控闪光灯的制作电路2:音乐门铃的制作电路3:多功能报警器的制作电路4: :节拍器的制作电路5:汽车转向灯电路的制作...
hifi音响和普通音响有什么区别HiFi(High Fidelity)音响和普通音响之间有几个主要区别:1 音质表现:HiFi音响旨在实现高保 ...
应用注释D类放大器用推荐产品(噪音滤波器、LPF用电感器、带ESD保护功能的陷波滤波器)用于智能手机及音响设备等的D类放大器拥有小型、高效率 ...
解决指南使用噪音滤波器的音频线解决指南 概要若不采取对策,智能手机的扬声器、耳机等音频线等线路中会辐射出电磁噪音。该噪音会对内置天 ...
本项目是基于PSOC6 进行开发,它具有以下特性Psoc6-evaluationkit-062S2 是RT-Thread联合英飞凌推出的一款集成 32 位双核CPU子系统(AR ...
嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科
上一篇:状元红97049cm查询
下一篇:三相标准精密测试电源选购指南